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Abstract

Cross-country differences in sectoral total factor productivity (TFP) are at the heart of Ricardian

trade theory and of many models of growth and development. Our knowledge of the magnitude and the

characteristics of cross-country differences in sectoral TFP is still limited however. This study fills the

gap by showing how sectoral TFP differences can be backed out from bilateral trade data using a hybrid

Ricardo-Heckscher-Ohlin model. This approach allows us to overcome the data problems that constrained

previous studies and to provide a comparable set of sectoral productivities for twenty-four manufacturing

sectors in more than sixty countries at all stages of development. Our results imply that TFP differences

in manufacturing sectors between rich and poor countries are substantial and far more pronounced in

skilled labour and R&D intensive sectors than in others. We also apply our productivity estimates to

test development theories that have implications for cross-country industry-level productivity patterns.
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The traditional approach to measuring cross-country differentials in industry total factor productivity (TFP)

requires comparable information on output and inputs at the sector level. Because of large gaps in these data

for virtually all developing countries, very little is known about the magnitudes and the patterns of those

differences outside the industrialized world. Thus, it is important to consider alternatives. We introduce and

apply a new method for estimating sectoral TFP levels that relies on information contained in bilateral trade.

This allows us to provide a comparable and, as we will argue, reliable set of industry TFPs for twenty-four

manufacturing sectors in more than sixty countries at all stages of development.

Our point of departure is a model that combines Heckscher-Ohlin trade with the Krugman (1979) model

of trade due to increasing returns and consumers’ love for variety and also allows for trade costs (see Romalis

(2004)). We extend this model to differences in industry TFP and to many asymmetric countries. This allows

us to back out sectoral productivity differences as observed trade that cannot be explained by differences in

factor intensities and in factor prices or by differences in trade barriers across countries.

The idea behind our method of estimating sectoral productivities is to exploit variation in bilateral

sectoral export values compared to those for a benchmark country, appropriately adjusted for differences

in total production volume and input costs, across export markets. As an example, consider how we infer

Italy’s TFP relative to the US in the textile sector. We first measure the fraction of Italy’s textile production

relative to US textile production that is exported to each market. If Italy exports more to an average market

than the US, once we have adjusted for relative input costs and relative bilateral trade costs, this indicates

a higher level of sectoral TFP.

A key virtue of our procedure is that we do not need output price data. The standard production function

approach requires such data to make sure that TFP differences do not reflect differences in market structure.

Our approach infers sectoral TFPs using exports of different countries to the same destination country and

therefore the same competitive environment. To put it differently, our approach exploits that differences in

sectoral exports to the same market must reflect differences in TFP rather than output prices once we have
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taken into account differences in input prices and trade costs.

We show that TFP differences between rich and poor countries are systematically larger in skilled labour-

and R&D-intensive sectors. Specifically, productivity gaps are far more pronounced in sectors such as Scien-

tific Instruments, Electrical and Non-electrical Machinery, and Printing and Publishing, than in sectors such

as Apparel, Textiles, or Furniture. Moreover, we find that cross-country TFP differences in manufacturing

sectors average about the same substantial orders of magnitude as development accounting literature has

found in cross-country variation at the aggregate economy level (for example, Hall and Jones (1999), and

Caselli (2005)). We also find that Ricardian TFP differences are quantitatively important to explain trade

flows. When restricting TFP differences to be country-specific, the fit of our estimation equations drops by

roughly 14 percentage points in terms of adjusted R-square. To explore the sensitivity of our results to the

underlying trade model, we also back out sectoral TFPs in models with firm heterogeneity in productiv-

ity (Eaton and Kortum (2002), Melitz (2003)) and in a model with endogenous markups. The estimation

equations implied by these alternative models are similar to the ones of our main approach and the sectoral

TFP findings are also similar. We also verify that our estimates for aggregate manufacturing TFP correlate

strongly with the productivity estimates found in the development accounting literature and that estimated

industry TFPs correlate with the productivities constructed as Solow residuals for the few countries and

industries where the information needed to apply that method is available.

We conclude by using our sectoral productivity estimates to test various development theories. Our

results show that technology spillovers are important in explaining cross-country sectoral TFP differences;

that larger endowments of human capital lead to faster technology adoption in human capital intensive

industries; and that financial development impacts on growth by leading to a more efficient allocation of

credit within a given sector.

This paper is organized as follows. The next section briefly discusses the related literature. Section 3

introduces the theoretical model. Section 4 develops a methodology for computing industry productivity

indices. Section 5 presents our empirical findings regarding sectoral productivity profiles. Section 6 covers

robustness checks. Section 7 discusses a number of applications of our productivity estimates with regard to
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testing specific development theories that have implications for cross-industry patterns in productivity. The

final section presents our conclusions.

1. Related Literature

Several studies have attempted to compare sectoral productivity indices across countries by specifying sec-

toral production possibility frontiers, and by using data on sectoral inputs and outputs. Typical of such

works are Dollar and Wolff (1988), Bernard and Jones (1996), Acemoglu and Zilibotti (2001), or Griffith

et al. (2004), which use aggregate PPP-indices to deflate sectoral output measures and deal only with a lim-

ited number of economies. Only a small number of studies – which are even more limited in terms of country

coverage – have constructed sectoral price indices to perform cross country industry-level productivity com-

parisons.1 A notable early example is Jorgenson et al. (1987), who compare sectoral TFP between Japan and

the U.S. They obtain industry deflators using price and expenditure information from consumer surveys and

direct retail price surveys. Using an alternative approach, van Ark and Pilat (1993) construct sectoral prices

with information on unit values and physical quantities to compare sectoral TFP levels between Germany,

Japan and the U.S. The most important attempt to tackle the price data issue is the International Compar-

ison Project (ICOP), located at the University of Groningen. One of ICOP’s latest projects, EU KLEMS, is

a high-quality growth-accounting database for the countries of the European Community. Since we use cost

functions to measure input costs, our approach is also related to dual growth accounting, a method originally

developed by Jorgenson and Griliches (1967) and applied by Aiyar and Dalgaard (2004) to aggregate TFP

accounting in levels for a cross section of OECD economies. This procedure assumes constant returns to

scale and perfect competition in goods and factor markets and requires information on input and output

prices, as well as on factor income shares. Thus – like for primal TFP comparisons – the main obstacle to

applying this method at the sector level for developing countries is again the shortage of industry price data.

In the trade literature there are also several contributions that construct sectoral productivity indices at

various levels of aggregation. Notably, Harrigan (1997) computes industry TFP levels for eight sectors in ten

1See van Biesebroeck (2009) for a discussion of most of these studies.
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OECD countries to test the fit of a generalized neoclassical trade model that allows for both Ricardian and

Heckscher-Ohlin trade. He finds support for the existence of Rybzcynski effects. In another paper, Harrigan

(1999) carefully constructs sectoral price indices for six manufacturing sectors in eight OECD countries and

shows that even across this restricted set of economies sectoral prices vary substantially.

Other related works are the following: Eaton and Kortum (2002) develop a multi-country Ricardian

model with a probabilistic technology specification that they calibrate to fit trade between OECD countries.

Chor (2010) extends their model to Heckscher-Ohlin trade and differences in sectoral characteristics such as

financial dependence and volatility. Taking a track parallel to ours, Finicelli et al. (2008) apply the baseline

Eaton-Kortum model to calibrating aggregate manufacturing TFPs for eighteen OECD economies. Their

model, however, does not include Heckscher-Ohlin rationales for trade. Also, the authors compute only

aggregate manufacturing productivity indices, whereas we estimate productivity differences at the industry

level and for a sample that includes a large number of developing countries. In fact, their main contribution

is to develop a method for evaluating the impact of trade openness on aggregate TFP, which occurs through

reallocation of resources towards more efficient firms, a channel that we disregard in the present paper.

Finally, Morrow (2010) also augments the Romalis model for Ricardian TFP differences in order to test

the hybrid Ricardian-Heckscher-Ohlin model. He estimates the model employing sectoral TFPs constructed

from production data instead of backing out TFPs from the model.

2. A Hybrid Ricardo-Heckscher-Ohlin Model

We use trade data to estimate sectoral TFP differences. This requires a model in which bilateral trade is

determined. We follow Krugman (1979) in assuming that consumers love variety and that production is

monopolistic with increasing returns at the firm level. We add three ingredients to the Krugman model.

First, we assume that firms in different sectors use different factor proportions when faced with the same

input prices, which gives rise to Heckscher-Ohlin style trade between countries. Second, we add bilateral

transport costs. As Romalis (2004) points out, this makes locally abundant factors relatively cheap and
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strengthens the link between factor abundance and trade.2 Thus, there is a cost advantage to producing

more in those sectors that use the abundant factors intensively. We can therefore predict that countries

will export more in those sectors. Finally, we add sectoral differences in TFP, which introduces a rationale

for Ricardian-style trade. Countries having high productivity in a sector enjoy a cost advantage relative to

their foreign competitors and charge lower prices. Because the elasticity of substitution between varieties is

larger than one, demand shifts towards such a country’s varieties and leads to a larger world market share in

the sector. We now turn to a formal description of the model, discussing first demand and then production

technology and firms’ pricing decisions.

2.1. Demand

Our model generalizes the setup of Romalis (2004). We assume that all consumers in a given country i have

identical and homothetic preferences. These are described by a two-tiered utility function. The first level

is a Cobb-Douglas aggregator over K sectoral sub-utility functions. This implies that consumers spend a

constant fraction of their income, σik, which potentially differs across countries, on goods produced in each

sector.3

Ui =

K∏
k=0

uσikik (1)

Sectoral sub-utility is a symmetric CES function over sectoral varieties, which means that consumers value

each of the available varieties in a given sector in the same way.

uik =

[ ∑
b∈Bik

x
εk−1

εk

b

] εk
εk−1

(2)

2In the Helpman-Krugman-Heckscher-Ohlin model (Helpman and Krugman (1985)), which itself does not feature transport
costs, trade in goods is undetermined as long as the number of factors is smaller than the number of goods and insofar as
countries are not specialized.

3For our baseline specification, preferences can be generalized to any country-specific, strictly concave, homothetic and
weakly separable utility function Ui(ui1, ..., uiK), where the uik’s are CES indices as defined in (2). This would lead to demand

functions of the form xijk =
p̂
−εk
ijk

P
1−εk
ik

Eik(Pi1, ..., PiK)Yi, where Eik(Pi1, ..., PiK)Yi is expenditure on sector k goods in country

i, and the Pik’s are CES price indices as defined in (4).
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Note that utility is strictly increasing in the number of sectoral varieties available in a country. Sector-specific

elasticity of substitution between varieties is denoted by εk, and in this model we assume it to be higher

than one, while Bik is the set of varieties in sector k available to consumers in country i.

Goods can be traded across countries at a cost that is specific to the sector-country pair. In order for one

unit of a good produced by sector k of country j to arrive at destination i, τijk units need to be shipped. The

form of the utility function implies that the demand function of country i consumers for a sector k variety

produced in country j has a constant price elasticity, εk, and is given by the following expression:

xijk =
p̂−εkijk σikYi

P 1−εk
ik

, (3)

where p̂ijk = τijkpjk is the market price of a sector k good produced by country j in the importing country

i, and Pik is the optimal sector k price index in country i, defined as:

Pik =

[ ∑
b∈Bik

p̂1−εk
b

] 1
1−εk

(4)

2.2. Supply

In each country, firms may be active in one of k = 0, ...,K different sectors. Production technology differs

across sectors due to differences in factor intensities as well as differences in industry TFP. In each sector,

firms can freely create new varieties and must pay a fixed cost to operate. Because of the demand structure

and the existence of increasing returns, production is monopolistic. For it is always more profitable to create

a new variety than to compete in prices with another firm that produces the same variety.

Firms in country j produce by combining physical capital, Kj(n), with price rj ,
4 unskilled labour, Uj(n),

with price wuj , and skilled labour. Sj(n), with price wsj .
5 In addition, there is a country- and sector-specific

total factor productivity term, Ajk. Firms’ production possibilities in sector k of country j are described by

4For notational ease, we denote rj alternatively as wcapj in the cost function.
5The fact that within every country each factor has a single price is related to the assumption that factors can move freely

across sectors within a country. For the empirical model, we need not make any assumptions about factor mobility across
countries.
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the total cost function:

TC(qjk) = (fjk + qjk)
1

Ajk

∏
f∈F

(
wfj
αfk

)αfk
, (5)

where F = {u, s, cap}, and
∑
f∈F αfk = 1. The form of the cost function implies that the underlying sectoral

production function of each firm is Cobb-Douglas with sectoral factor income shares (αuk, αsk, αcapk). To

produce, firms need to pay a sector- and country-specific fixed cost, fjk, which uses the same combination

of capital, and skilled and unskilled labour as the constant variable cost.

Monopolistic producers maximize profits given (3) and (5). Their optimal decision is to set prices as a

fixed mark-up over their marginal costs.

pjk =
εk

εk − 1

1

Ajk

∏
f∈F

(
wfj
αfk

)αfk
(6)

The combination of sectors with different factor intensities and country-sector-specific TFP differences

results in a Heckscher-Ohlin model with Ricardian features. Since the elasticity of substitution across

varieties, εk, is larger than Unity, consumers spend more on cheaper varieties. This together with the pricing

structure implies that lower production costs translate into larger market shares. Low production costs may

occur either because a sector is intensive in locally cheap factors and/or has high productivity.6

3. Towards Estimating Sectoral Productivities

We now use our trade model to develop a method for estimating cross-country sectoral productivity levels.

To this end, we specify the sectoral volume of bilateral trade (measured at destination prices), which is

defined as the value of country i’s imports from country j in sector k, as:

Mijk = p̂ijkxijkNjk = pjkτijkxijkNjk (7)

6In the supplementary Appendix to this paper we present a general equilibrium version of the model and discuss in more
detail how comparative advantage is determined.
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The measured CIF value of bilateral sectoral trade is the factory gate price charged by country j exporters in

sector k multiplied by the transport cost, by the quantity demanded for each variety by country i consumers,

and by the number of varieties produced in sector k in the exporting country. Substituting the demand

function xijk(p̂ijk) from (3), we obtain:

Mijk =
(pjkτijk)1−εkσikYi

P 1−εk
ik

Njk (8)

Finally, using the fact that exporting firms choose a factory gate price, which is a constant mark-up over

their marginal cost, and substituting the marginal cost function (5), we can rewrite bilateral sectoral trade

volume as:

Mijk =

 εk
εk−1τijk

∏
f∈F

(
wfj
αfk

)αfk
AjkPik

1−εk

σikYiNjk (9)

Equation (9) makes clear that bilateral trade in sector k measured in dollars depends positively on the

importing country consumers’ expenditure share on sector k goods, σik, and their total income, Yi. On the

other hand, because the elasticity of substitution between varieties is larger than Unity, the value of trade

is falling in the price charged by exporting firms, pjk. This and the pricing rule (6) imply that trade is

decreasing in the exporters’ production costs. If a factor is relatively cheap in a country, this leads to a

cost advantage for exporting firms in sectors where this factor is used intensively. The same holds true for

industry productivity, Ajk. If a country has high productivity in a sector relative to other exporters, it can

charge lower prices and has a larger value of exports.

All of the previous statements hold conditional on the number of firms in sector k in the exporting country.

Regrettably, the available sectoral data on the number of firms active in the exporting countries is scarce

and not always comparable across countries. However, we observe the value of industry production. Thus,

by using the model itself, it is possible to solve for the number of firms given total sectoral production.7 The

monetary value of total production of sector k in country j, Q̃jk, equals the monetary value of production

7Moreover, using sectoral gross output instead of the number of firms mitigates mismeasurement problems, because these
occur mainly for small firms that have a negligible effect on sectoral gross output.
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of each firm times the number of firms.

pjkqjkNjk = Q̃jk (10)

Assuming that new firms can enter freely, firms in equilibrium make zero profits and price at their average

cost. Combining this fact with (6), it is easy to solve for equilibrium firm size, which depends positively on

fixed costs and on the elasticity of substitution.

qjk = fjk(εk − 1) (11)

Using this result and plugging it into the definition of sectoral output, we get:

Njk =
Q̃jk

pjk(εk − 1)fjk
(12)

Substituting for Njk in equation (9), we obtain:

Mijk =

 εk
εk−1

∏
f∈F

(
wfj
αfk

)αfk
Ajk

−εk [τijk
Pik

]1−εk
σikYi

Q̃jk
(εk − 1)fjk

(13)

This equation can be rearranged to solve for sector productivity Ajk. Inasmuch as a productivity index

needs to be defined relative to some benchmark, we measure productivity relative to a reference country.

We have chosen the US as a benchmark because it exports to the greatest number of destinations in most

sectors.8 Another advantage of choosing a reference country is that all the terms that are not indexed to

the exporting country j (i.e., σik, Yi, or Pik) drop from the equation. For each importer i we can express the

“raw” productivity of country j in sector k relative to the US.

Ãijk

ÃiUSk
≡ Ajk

AUSk

(
fjk
fUSk

)−1/εk ( τijk
τiUSk

) 1−εk
εk

= (14)

=

(
Mijk

MiUSk

Q̃USk

Q̃jk

)1/εk ∏
f∈F

(
wfj
wfUS

)αfk
8We have also tried other benchmark countries, such as Germany and Japan, and our results are robust to these alternative

specifications.
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Our “raw” productivity measure,
Ãijk
ÃiUSk

, is a combination of relative industry productivity, fixed costs, and

transport costs.

Intuitively, country j is measured to be more productive than the US in sector k if, after controlling for

the relative cost of factors, j exports a greater fraction of its production to country i than does the US. Note

that we can compute this measure vis-à-vis every importing country by using only data on relative imports

and on exporters’ relative production and factor prices. This “raw” measure of relative productivities also

embraces relative sectoral transport costs and fixed costs of production. While relative transport costs vary

by importing country, exporters’ relative productivities and fixed costs are invariant vis-à-vis the importing

country. Consequently, it is easy to separate the two parts by using regression techniques. Relative produc-

tivity is defined as the product of the relative productivity of variable production and weighted relative fixed

cost,
(
Ăjk

ĂUSk

)
=
(
Ajk
AUSk

)(
fjk
fUSk

)−1/εk
. Taking logarithms, we get:

log

(
Ãijk

ÃiUSk

)
= log

(
Ăjk

ĂUSk

)
+

1− εk
εk

log

(
τijk
τiUSk

)
(15)

We assume that bilateral transport costs, τijk, are a log-linear function of a vector of bilateral variables

(distance, tariffs, common language, common border, etc.) plus a random error term. Hence, τ
1−εk
εk

ijk =

Xβk
ijke

uijk , where Xijk is a vector of bilateral variables and uijk is random noise. Consequently, we obtain a

three-dimensional panel with observations that vary by industry, exporter, and importer.

log

(
Ãijk

ÃiUSk

)
= log

(
Ăjk

ĂUSk

)
+ β1k(logDistij − logDistiUS) + (16)

+β2k(log Tariffijk − log TariffiUSk) +

+β3kCommonLangij + β4kCommonLangiUS + ...+ uijk − uiUSk

Relative TFP of country j in sector k is captured by a country-sector dummy. The coefficients βk measure

the impact of the log difference in bilateral variables on the sectoral trade cost multiplied by the negative
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sector-specific factor 1−εk
εk

. The sector-country dummies are computed as:

Ăjk

ĂUSk
= exp

log


−
Ãjk

ÃUSk

− βFEk −
Xjk

 (17)

Here, the bars indicate means across importing countries i, and βFEk is the fixed effect panel estimator for

the vector βk. Consequently, the estimated productivity of country j in sector k relative to the US is the

mean of
(
Ãijk
ÃiUSk

)
across importing countries, controlling for the average effect of relative sectoral trade costs.

This is a consistent estimator for relative industry productivity as long as there are no omitted variables

with a non-zero mean across importers.

Let us discuss at this point why relative fixed costs enter into our expression for relative productivity(
Ăjk

ĂUSk

)
=
(
Ajk
AUSk

)(
fjk
fUSk

)−1/εk
. Note that

(
Ăjk

ĂUSk

)
<
(
Ajk
AUSk

)
whenever relative fixed costs are larger than

Unity. In that case, we assign relatively too few firms to country j. The reason is that we have replaced

the number of firms by (12), which depends on sectoral production and fixed costs. Higher relative fixed

costs imply larger relative firm size (see (11)) and consequently a lower relative number of varieties produced

given relative sectoral production. Relative bilateral trade given relative sectoral production increases in

the relative number of producers because of love for variety. Hence, relatively higher fixed costs require a

relatively higher productivity in variable production for a given ratio of exports relative to production. Also,

the elasticity of substitution, εk, determines how sensitive the volume of relative bilateral sectoral trade is

with respect to relative price differences. Indeed, a lower elasticity implies less sensitivity to price differences.

Hence, observed differences in export volumes relative to sectoral production must be due to larger differences

in variable productivity. Simultaneously, the adjustment needed to control for this effect (inverse weighting

by elasticities) increases the role played by relative fixed costs in lowering relative productivity compared to

relative productivity of variable production.9

9There are several possible empirical approaches to investigating fixed costs’ effects on industry productivity. One way is
to specify fixed costs as multiplicatively separable between a country- and a sector-specific component, fjk = fjfk. In this

case we obtain

(
Ăjk

ĂUSk

)
=
(
Ajk
AUSk

)(
fj
fUS

)−1/εk
indicating that fixed costs should matter more for relative productivity in

more differentiated sectors. To investigate whether this is indeed the case, we have experimented with regressing estimated
productivities on the interaction of sectoral elasticities of substitution and different country-specific measures of entry cost (e.g.,
entry cost relative to GDP per capita; entry costs in dollars; number of procedures to register a business; time to register a
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Our measure of relative TFP is transitive. This implies that productivity profiles are comparable across

countries within sectors in the sense that
Ajk
Aj′k

=
Ajk
AUSk

(
Aj′k
AUSk

)−1

. However, one cannot compare TFP in

any country between sectors k and k′, as this would mean comparing productivities across different goods.

The productivity indices could alternatively be interpreted as differences in sectoral product quality across

countries. Under this interpretation there would not exist any cost differences arising from TFP differentials

across countries but consumers would be willing to spend more on goods of higher quality. Differences in

Mijk across countries would not arise because of differences in quantities shipped due to cost differentials

but rather because of differences in quality. Since we look only at the value of trade, for our purposes the

two interpretations are equivalent.10

Before presenting the results of our estimations, we briefly describe all the inputs needed to construct our

measures of sectoral productivity. A more detailed description of the data can be found in the Appendix. We

compute sectoral productivities for twenty-four (ISIC Rev. 2) manufacturing sectors in sixty-four countries

at all stages of development, for three periods: the mid-eighties, the mid-nineties, and the beginning of this

century. To this end, we use data on the following: bilateral trade at sector level; sectoral production; factor

prices; sectoral factor income shares; elasticities of substitution; and sectoral bilateral trade barriers. We

obtain information on sectoral bilateral trade and gross output from the World Bank’s Trade, Production and

Protection database (Nicita and Olarreaga (2007)). We construct factor prices for skilled and unskilled labour

and for capital following the methodology proposed by Caselli (2005) and Caselli and Feyrer (2007). Sectoral

factor income shares are computed from US data, while information on sectoral elasticities of substitution

business), and average rank scores of these variables. While coefficients mostly exhibit the correct sign, they are not significant
once we control for sector and country fixed effects, presumably because there is not enough variation in sectoral elasticities of
substitution. Since there is no robust evidence for the differential impact of fixed costs across sectors, we therefore stick to a
simpler specification and assume fjk = fk. In this case fixed costs drop from our specification and productivity levels can be
interpreted as corresponding to variable production.

10The following model is isomorphic to the one presented in the main text. Replace sectoral sub-utility with the expression

uik =

[∑
b∈Bik (λbxb)

εk−1

εk

] εk
εk−1

, where λb > 0 is a utility shifter that measures product quality and let the cost functions be

identical across countries for a given sector, such that TC(qjk) = (fk + qjk)
∏
f∈F

(
wfj
αfk

)αfk
. Assuming that in an exporting

country all firms within a sector produce varieties of the same quality, demand of country i consumers for sector k varieties

produced in j is: xijk =
p̂
−εk
ijk

λ
εk−1

jk
σikYi

P̃
1−εk
ik

, where P̃ik =
[∑

b∈Bik ( p̂b
λb

)1−εk
] 1

1−εk is the optimal quality adjusted price index. In

this case, the value of bilateral trade is Mijk =
(pjkτijk)1−εkλ

εk−1

jk
σikYi

P̃
1−εk
ik

Njk. It becomes clear, comparing this expression with

the one in the main text (8), that productivity differences are indistinguishable from differences in product quality, because the
value of bilateral trade is identical in both cases.
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come from Broda and Weinstein (2006).11 Mayer and Zignago (2005) and Rose (2004) afford us data on

distance and other bilateral variables (e.g., existence of a common border between exporter and importer;

whether a trading partner was formerly a colony of the exporter or importer; whether the partners share a

common language, are members of the same regional trade agreement, are members of a generalized system

of preferences, or share in a common currency union). Finally, we use information on bilateral sectoral tariffs

from the UNCTAD TRAINS database.

Table 1 provides some descriptive industry statistics. Skill intensity, measured as the share of non-

production workers in sectoral employment, varies from 0.15 (Textiles and Footwear) to 0.49 (Beverages)

with a mean value of 0.27. Capital intensity, measured as Unity minus labour compensation in value added,

varies from 0.56 (Fabricated Metals) to 0.85 (Beverages) with a mean value of 0.66. Finally, the elasticity of

substitution varies between 1.90 (Pottery) and 12.68 (Non-Ferrous Metals) with a mean value of 4.36.

4. Results

We first report the results of computing productivities using our baseline specification (16). We use a stepwise

linear panel estimation12 with sector-country-specific fixed effects. We limit the sample to exporter-sector

pairs for which we observe exports to at least five destinations. At this stage of our analysis, however, we

ignore information contained in zeros in bilateral trade flows and issues of sample selection. This leaves us

with a sample of around 42,000 observations for a given period.

Table 2 shows the regression results for our baseline model using data for the mid-nineties. The overall

fit is very good, with an R-square of 0.80 and a within R-square of 0.47. This implies that in our regression

trade costs due to the gravity type variables account for approximately half of the variation in
Ãijk
ÃiUSk

across

importers. In addition ρ – the fraction of the variance of the error term that is due to
Ajk
AUSk

– is 74%. Both

of these facts corroborate our interpretation of the sector-country fixed effect as an exporter-sector-specific

productivity measure.

11Working with elasticities of substitution from Hummels (1999) does not affect results significantly.
12The stepwise procedure starts with the full model, which includes all right hand side variables, and one by one discards

variables that are not significant at the 10% level of significance, using robust standard errors clustered by exporter, while
taking care of the fact that a discarded variable might become significant once another variable has been dropped.
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Recall that the sign of the coefficients reflects the relevant variable’s impact on transport costs multiplied

by the negative term 1−εk
εk

. Thus, a negative coefficient implies that an increase in the variable will increase

relative transport costs.

In all sectors, differences in distance have a large and very significant negative effect on our relative raw

productivity measure (i.e., increase trade costs). Differences in bilateral sectoral tariffs between country

j and the US are also negative and significant for all sectors except Other Chemicals (sector 352). The

indicators for common language between the importer and the exporter have a significant positive effect on

raw productivity (i.e., reduce transport costs) in all sectors but two. The fact that one of the exporters has

a common border with the importer has a significantly positive effect on raw productivity only for some

sectors. The last variable we include, having a common colonial past between exporter and importer, has a

positive impact on our raw productivity in all sectors but two.13

Having run regression (16), we use (17) to construct sectoral productivities. We compute almost 1500

sectoral TFPs for each period. Table 3 summarizes some information about these productivities in the

mid-nineties. For each country in our sample, we present the country mean of TFP across industries,14 the

standard deviation, and the sectors with maximum and minimum TFP.

First, we observe that there is a strong correlation between a country’s income per worker and average

relative TFP in manufacturing. Lower-income countries tend to have markedly lower sectoral productivities

than do rich ones. Within countries, however, relative productivities vary greatly from sector to sector.

Taking for example Pakistan (PAK), we measure an average relative manufacturing TFP equivalent to 0.20

of the US level. This figure masks considerable heterogeneity across sectors: from a productivity of 0.63 with

respect to the US level in Furniture (322) to one of only 0.07 in Printing (341). In general, Plastics (356),

13Overall, of all estimated significant coefficients, only one has a wrong sign: Common English Language in the sector
Footwear. Note also that of all the other bilateral variables that were in principle included in the regression (common regional
trade agreement, common membership in a currency union, common membership in a generalized system of preferences), none
have any robust effect on relative raw productivities once we control for relative tariffs and distance. Consequently, those
variables do not appear in the final specification.

14These means of sector productivity cannot be interpreted as aggregate manufacturing productivity indices in terms of
economic theory. For, to do so, we would need to take agents’ preferences into account for a proper aggregation. Nevertheless,
they give some sense of the magnitude of average sectoral productivity differences across countries. For some countries we
cannot compute TFP for all sectors either because of missing production data or because the country does not export to enough
countries in a sector. In such cases, we drop the sector from (16). Ivory Coast is the country with the smallest number of sectors
for which we obtain productivity measures, specifically fifteen of them. Only in nine (out of sixty-four) countries we construct
productivities for less than twenty sectors. The complete set of productivity estimates is online at http://www.pablofleiss.com.
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Fabricated Metals (381), and Transport Equipment (384) are sectors in which many of the lower-income

countries tend to be least productive relative to the US. On the other hand, many poor countries reach their

highest relative productivity figures in the sectors Food (311) and Apparel (322).

In order to exemplify our results, the panels of Figure 1 show scatter plots of estimated sectoral produc-

tivities against the log GDP per worker in the mid-nineties for four out of the twenty-four sectors. There

is a high correlation between sectoral productivity and log GDP per worker in all sectors. However, the

magnitude of productivity differences varies greatly across sectors. For example, the relationship between

log income per worker and productivity is much more pronounced in Metal Products (381) than in Food

(311).

At this point it seems interesting to compare our mean sectoral productivities in manufacturing with

the aggregate productivities found in Development Accounting literature. To this end we compute weighted

averages (by value added) for our sectoral TFPs and correlate the results with aggregate productivities

constructed from production and endowment data.15 Figure 2 shows a scatter plot of our aggregate manu-

facturing productivity set against aggregate productivity indices computed as Solow residuals. We note that

there is a very strong correlation between these two sets of productivity estimates. The correlation coefficient

between the two is 0.68. Productivity differences in manufacturing tend to be even larger than aggregate

ones. This pattern is determined by the fact that European countries seem to be relatively more productive

in manufacturing than at the aggregate level. It is nevertheless notable that, in manufacturing, our method-

ology estimates as far less productive than the US a number of lower-income countries (e.g., Tunisia, Egypt,

Guatemala, and Venezuela), which the Solow residual method places close to the US productivity.

To get an even better feeling for the productivity differences between rich and poor countries we split

the countries in two samples: developing countries (with income per worker below US$8000 in 1995) and

developed countries. Figure 3 (left) shows a histogram of sector productivities for the mid-nineties for both

subsamples, where each observation is given by a sector-country pair. We observe that the productivity

distribution of developing countries is left skewed, so that most sectoral productivities are far below the US

15We use data on income, capital stocks, and human capital per worker for 1996 from Caselli (2005), and follow Hall and

Jones (1999) in calculating TFP using the formula yc = Ac
(
Kc
Yc

)α/(1−α)
hc.
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level, with a long tail on the right, meaning that there are a few developing countries more productive than

the US in certain sectors. Developed countries’, on the other hand, have a relatively symmetric productivity

distribution with a mean sectoral productivity that is slightly below Unity, and a significant variation to

both sides, from around 0.2 to 1.5 of the US level.

Figure 3 also shows (in the right panel) the evolution of the relative productivities of developing countries

over time. The dashed line is the histogram of developing countries’ productivities in the mid-eighties, the

solid line is the histogram for the mid-nineties and the dotted line the one for the beginning of this century

for the sample of twenty-two developing countries for which we have data for all three periods. We see that

the distribution is shifting to the right over time, meaning that over this twenty-year period lower income

countries are slowly catching up in sectoral TFP relative to the US.16

Our estimates also allow us to construct “Ricardian”-style curves of comparative advantage due to pro-

ductivity differences for any given sector-country pair. The panels of Figure 4 depict productivities arranged

in decreasing order, according to the magnitude of relative productivity differences with the US, for four

representative countries: Germany, Spain, Uruguay, and Zimbabwe.

As a further application, we investigate whether productivity differences between developing and indus-

trialized countries are systematically related to sector characteristics. Table 4 shows the results of a weighted

regression17 of log(TFP) relative to the US in the mid-nineties on sectoral human capital intensity and the

interaction of human capital intensity and log income per worker, controlling for country fixed effects.18 In

lower-income countries, productivity differences relative to the US are systematically larger in human capital

intensive sectors, but in richer countries this effect disappears. Repeating the same exercise with sectoral

physical capital intensity we do not find much evidence for a relation between productivity, capital intensity,

and income per worker. Finally, we relate relative productivities to R&D intensity measured by sectoral

16The countries in our sample that have on average experienced the fastest convergence in TFP towards the US level over
these two decades (annualized growth rates in parenthesis) are China (5.1%), Uruguay (4.67%), Argentina (4.3%), Egypt (4.1%),
and Poland (4%). The countries with the greatest divergence are Jordan (-3.6%), Panama (-2%), Kenya (-1.2%), and Ecuador
(-0.3%). The sectors in which developing countries have on average experienced the fastest speed of catch up are Pottery (4.9%),
Printing and Publishing (3.7%), Electrical Machinery (3.4%), and Other Chemicals (3.3%), while the ones with the lowest speed
of convergence are Beverages (-0.8%), Transport Equipment (-0.7%), Food (-0.6%), and Industrial Chemicals (0.7%).

17Weighted with the inverse of the standard deviation of log(TFP). Results also go through without weighting observations.
18We prefer not to overemphasize this result because it may be partially affected – even though this is unlikely – by mismea-

surement of sectoral factor income shares. See the supplementary Appendix for an analysis of measurement errors in factor
income shares.
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investment in R&D in the US as a fraction of sectoral value added. Again, lower-income countries have

systematically larger productivity gaps in R&D intensive sectors, an effect that is mitigated as countries

become richer.

5. Robustness

In order to make sure that our productivity estimates are not sensitive to the specific assumptions of our

model and to our econometric strategies, we have performed a series of robustness checks. For brevity’s

sake only the most important ideas and results are discussed in the main text. The detailed results and

derivations are relegated to a supplementary Appendix.

One potential weakness of our productivity estimates is that we have calibrated rather than estimated

the effect of differences in factor prices and in factor proportions. If trade is not systematically related to

these factors, our productivity estimates could be biased. In order to avoid such concerns, we show that our

results are robust with regard to estimating directly the effect of factor intensities and elasticities alike.

An alternative specification rearranges (14) in such a way that we can write trade relative to production

as a function of TFP, factor cost, and bilateral variables.

(
Mijk

MiUSk

Q̃USk

Q̃jk

)
=

(
Ajk
AUSk

)εk ∏
f∈F

(
wfj
wfUS

)αfk−εk ( τijk
τiUSk

)1−εk
(18)

Then, using the fact that αcapk = 1− αsk − αuk, we can write:

log

(
Mijk

Q̃jk

)
− log

(
MiUSk

Q̃USk

)
= (19)

εklog

(
Ajk
AUSk

)
− εk

log

(
rj
rUS

)
+
∑
f 6=cap

αfklog

(
wfj
rj

)
− αfklog

(
wfUS
rUS

)+ (1− εk)log

(
τijk
τiUSk

)

Provided that productivities are not correlated with relative factor prices within a country – as for the

moment, we assume, – a consistent estimator for
(

Ajk
AiUSk

)
can be obtained from the following two-step

procedure.

18



First, we regress our dependent variable on sector-country dummies and bilateral variables:

log

(
Mijk

Q̃jk

)
− log

(
MiUSk

Q̃USk

)
= Djk + βklog

(
τijk
τiUSk

)
+ uijk (20)

Having obtained the first stage estimates, next we regress the sector-country dummy on factor prices weighted

by factor intensities as well as on country and sector dummies.

D̂jk = Dj +Dk +
∑
f 6=cap

βfk

[
αfklog

(
wfj
rj

)
− αfklog

(
wfUS
rUS

)]
+ νjk, (21)

where f ∈ {s, u}. In order to obtain a measure of sectoral TFP, we use the relation:

(
Ajk
AiUSk

)
= exp

[
1/εk(Dj +Dk + νjk) + log

(
rj
rUS

)]
(22)

This procedure is similar to the Hausman-Taylor GMM estimator, which allows some of the right hand side

variables to be correlated with the fixed effects and at the same time makes it possible to estimate the

coefficients of those variables that do not vary by importing country.

Table 5 reports the results of this regression. Differences in tariffs and in distance have a very significant

negative impact on relative normalized trade in all sectors. The other bilateral variables have the expected

sign and are mostly significant. The fit of the first stage has an R-square of 0.64. In the second stage

the interactions between factor intensities and the relative price of skilled and unskilled labour are highly

significant. The R-square of the second stage is 0.55. This implies that country and sector dummies and the

Heckscher-Ohlin components explain around half of the country-sector specific variation.

The productivity estimates obtained through this procedure are very similar to our baseline set of produc-

tivities. The first rows of Table 6 show the aggregate correlation and the Spearman rank correlation between

these two sets of productivities. For most sectors the correlations exceed 0.90, with an overall correlation of

0.98. Still, we prefer the main specification’s mix of calibration and estimation. This is because our original

approach does not require any assumptions regarding the correlations between the independent variables
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and the country-sector fixed effect, and also because not all of the coefficients in this specification exhibit

the correct magnitudes.

This way of estimating sectoral productivities also allows us to assess the importance of Ricardian pro-

ductivity differences for explaining bilateral trade. To do so, we compare the fit of the first step (20) with

the one of a model having country-specific productivities combined with a Heckscher-Ohlin component that

ignores Ricardian productivity differences.

log

(
Mijk

Q̃jk

)
−log

(
MiUSk

Q̃USk

)
= Dj+Dk+

∑
f 6=cap

βfk

[
αfklog

(
wfj
rj

)
− αfklog

(
wfUS
rUS

)]
+βklog

(
τijk
τiUSk

)
+uijk

(23)

The adjusted R-square of this model is 0.5 compared to 0.64 obtained by allowing for Ricardian productivity

differences. Thus, there is a 14 percentage point gain in fit by introducing Ricardian productivity differences.

Also the Akaike information criterion tells us that the Ricardian model does much better in terms of fit.19

Again, for brevity’s sake, the other robustness checks are only sketched in the main text. Results on

aggregate correlations and rank correlations between the baseline productivities and the alternative estimates

are reported in Table 6.

A further extension introduces heterogeneity in firms’ marginal costs and fixed costs to exporting, so as

both to explain zeros in bilateral trade flows and to decompose bilateral trade flows into an extensive (number

of exporters) and an intensive (exports per firm) margin. When estimating this more general models with

the Heckman selection model (to take into account the non-random zeros) and with a two-step procedure as

suggested by Helpman et al. (2008) (to control also for the extensive margin of trade) we continue to obtain

quite similar results for our sectoral productivity estimates (columns labeled “Heckman” & “Heterogeneous

Firms”).

We also demonstrate that, when augmented by a Heckscher-Ohlin component, Eaton and Kortum’s Ri-

cardian trade model leads to a structural estimation equation that is very similar to our baseline specification

and so also produces comparable productivity estimates (column “Eaton-Kortum”).

19AIC drops from 171,455 for the restricted model to 157,827 for the Ricardian model. When comparing (16) with a restricted
version that allows only for country-specific TFP differences, we get very similar results regarding the importance of Ricardian
productivity differences.
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Next, we generalize our specification to allow for endogenous markups that depend on toughness of

competition in each market. We show that our baseline estimation equation remains approximately valid.

The main idea is that we always compare exporters from a given country and the US with respect to a

specific market, where firms of both origins face the same environment.

Moreover, we explain how (traded) intermediate goods can easily be incorporated into our model. Under

some mild assumptions, this leaves the estimation equations unaffected but introduces room for sectoral

productivities to be influenced by cross-country and cross-industry differences in the availability and prices

of intermediates. Lower productivities are predicted for countries where fewer varieties are available and

where intermediates are more expensive. Whether this is indeed the case in the data is an interesting

question for further research.

Another check investigates whether the fact that we have used US factor income shares as proxies for

sectoral factor intensities is likely to cause systematic biases in productivity patterns. We find that for most

plausible assumptions regarding differences in sectoral factor income shares, this is not the case.

Finally, we use the OECD STAN database to show that our sectoral productivity estimates correlate

with those calibrated from production data for the few industrialized countries where such calculations are

feasible.

6. Productivity Differences and Theories of Development

In this section, we apply our sectoral productivity estimates to testing a number of development theories

which have implications for cross-country sectoral productivity differences. Here, we focus on three examples

that, in our view, show particularly well the advantages of having estimates of industry productivities for a

large set of countries: R&D spillovers, the role of human capital for technology adoption and the impact of

financial development on TFP.

International technology spillovers are a prominent explanation both for the persistent differences in

cross country productivity levels and for the stability of the world income distribution (Parente and Prescott
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(1994), Howitt (2000), Klenow and Rodriguez-Clare (2005)). Cross-country knowledge spillovers guarantee

a stable world income distribution even in the presence of persistent international differences in R&D in-

vestment rates. In those models, there is a certain advantage to backwardness in the sense that countries

that are further away from the technology frontier experience faster technology improvements. For a given

distance to the frontier, higher R&D investment rates lead to faster rates of technology adoption.

When applied at the sector level, Klenow and Rodriguez-Clare (2005)’s model has several predictions

which can be usefully assessed by use of our sector productivities. First, the effect of a higher R&D investment

rate on the steady state TFP level relative to the frontier is larger in those sectors where the world technology

frontier grows faster. Second, since there is an advantage to backwardness, TFP growth will be higher the

further from the cutting edge a sector is. Third, the impact of a higher R&D investment rate on the TFP

growth rate relative to the frontier is larger precisely in those sectors where the relevant technology advances

faster.20

To examine the effect of R&D investment on technology adoption, we perform the following exercises.

To check the first prediction, we regress the level of log TFP relative to the US in the mid-90’s21 on the

interaction of countries’ R&D investment rates, Rj/Yj , and the sectoral R&D investment rate in the US,

RUSk/YUSk – which we take as a proxy for the growth rate of the sectoral technology frontier, – controlling

for sector- and country-specific effects.

log

(
Ajk
AUSk

)
= β1Xjk +Dk +Dj + εjk, (24)

where Xjk = (Rj/Yj)∗(RUSk/YUSk), Dj and Dk are country and sector fixed effects and εjk is an i.i.d. error

term. Data on countries’ R&D investment rates come from the Lederman and Saenz (2005) database and

US R&D investment rates by industry, defined as R&D expenditure as a fraction of sectoral value added,

are constructed using data from the National Science Foundation.

20Empirical evidence for these mechanisms is relatively limited. At the aggregate level Coe and Helpman (1995) and Eaton
and Kortum (1999) provide evidence for R&D spillovers. Meanwhile Griffith et al. (2004) who use sectoral TFP growth rates for
manufacturing in 12 OECD countries for the period 1974-90, find support for the hypothesis that R&D investment facilitates
technology adoption.

21All regressions in this section are weighted by the inverse of the standard deviation of TFP. Our results also hold true
without weighting observations and for the other periods for which we have computed TFPs.
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To investigate the second and third prediction, we regress the growth rate of sectoral TFP relative to

the US between the mid-80’s and the mid-90’s on the initial level of sectoral TFP and the interaction of

countries’ R&D investment rates with industry R&D investment rates in the US.

∆ log

(
Ajk
AUSk

)
= β1Xjk + β2 log

(
Ajk0

AUSk0

)
+Dk +Dj + εjk, (25)

where Xjk is again the R&D interaction term and log
(
Ajk0
AUSk0

)
is the initial level of TFP relative to the

US. We expect the coefficient on the initial level of sectoral TFP to be negative and the coefficient of the

interaction term to be positive.

The first two columns of Table 7 report the results of the previous specifications. The R&D interaction

has a significant positive effect on relative TFP levels both in the level and in the growth rate specification.

There is also clear evidence for a convergence effect – the coefficient for the initial TFP level enters with a

highly significant negative sign into the growth rate specification.

Another category of models emphasizes the role of human capital in the adoption of new technologies

(e.g., Nelson and Phelps (1966), Caselli and Coleman (2006)). In a classic paper, Nelson and Phelps (1966)

explore a one-sector model where higher levels of human capital help to adopt new technologies from a world

technology frontier that grows at an exogenous rate.

Ciccone and Papaioannou (2009) build a multi-sector version of the Nelson-Phelps model and assume

that technological progress is skill-biased in the sense that the world technology frontier grows faster in skill

intensive sectors. They show that if the rate of technology adoption depends on a country’s total endowments

of human capital, productivity levels as well as productivity growth rates relative to the frontier are higher

in skill intensive sectors if a country has a higher level of human capital. They empirically implement their

model by regressing sectoral growth rates of value added and employment in manufacturing on the interaction

between sectoral skill intensity, αsk, and countries’ initial human capital endowments, Hj , as measured by

the average years of schooling in the population in 1980 for a large sample of countries. Their work lends

support to the hypothesis that countries with higher initial levels of human capital grow faster in human
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capital-intensive sectors.

Having measures of industry TFP relative to the US allows us to test if the level of industry TFP

is significantly higher in skill intensive sectors for those countries that have larger endowments of human

capital. Second, this information enables us to see if sectoral productivity growth rates are indeed higher in

skill intensive sectors whenever countries have larger endowments of human capital. In this regard, we have

an advantage over Ciccone and Papaioannou (2009) because the latter cannot control for accumulation of

certain factor inputs at the industry level (e.g., physical or human capital) which may affect sectoral value

added or employment growth.

To evaluate the predictions of the multi-sector Nelson-Phelps model, we regress both the level and the

growth rate of sectoral TFP relative to the US, whose productivity we take as the one of the frontier, on the

human capital interaction, αsk ∗Hj . For the regression in levels we consider the mid-nineties, while for the

second specification we take the growth rate of sectoral TFP relative to the US between the mid-80’s and

the mid 90’s. The econometric specification is again analogous to (24) and (25). Once more, we control for

sector- and country fixed effects in all regressions.

Looking at columns 3 and 4 of Table 7 we see that the coefficient of the human capital interaction

term is positive and significant at the 1% level both in the level and in the growth rate specification. This

implies that, in more skill intensive sectors, more human capital abundant countries have relatively higher

productivity levels and productivity growth rates alike.22

A further application relates our sectoral productivity profiles to financial development. In a seminal

article Rajan and Zingales (1998) show that industries that are more dependent on external finance grow

faster in financially developed countries, thereby providing evidence for a causal relationship between finance

and growth. The main advantage of our sectoral productivity estimates is that we can address the specific

channel through which financial development affects growth.

The empirical finance-growth literature has difficulties in assessing whether financial development leads

22The results for TFP levels should be interpreted cautiously, as they may reflect a mismeasurement of the Heckscher-Ohlin
effect in the construction of our productivity estimates. Notwithstanding, we are more confident about the validity of our results
for TFP growth rates, where no such critique applies. To avoid any risk of measuring any Rybczynski effects, moreover, we have
experimented with including an interaction between human capital intensity and the change in human capital endowments,
which was never significant and did not affect the significance of the human capital interaction term in levels.
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to growth by: a) easing financial constraints and increasing the amount of investment firms are able to

undertake; or b) more efficient allocation of credit within sectors.23 This is because, for most countries,

reliable sectoral investment series are not available. We provide evidence for the second explanation by

showing that financial development leads to significantly higher relative productivity levels, and enhanced

growth rates in sectors that depend more on external finance.

Here, our empirical strategy closely follows Rajan and Zingales. External financial dependence, EXTFINk,

is measured by the fraction of sectoral investment that US firms cannot finance with internal cash flows and

comes from Rajan and Zingales (1998). To proxy for the tightness of credit constraints, we use sectoral fi-

nancial dependence and interact it with country-level financial development, PRIVj , as measured by private

credit as a fraction of GDP in 1995 from Beck (2000). Thus, first, we regress (log) sectoral productivity in

the mid-90’s on the EXTFINk ∗ PRIVj interaction using specification (24) and controlling for sector and

country fixed effects. Column 5 of Table 7 shows that financial development has a significantly (at the 1%

level) larger positive effect on relative productivities in sectors that depend more on outside finance. Next,

we regress the growth rate of sectoral TFP on the same interaction using specification (25), and controlling

for sector and country fixed effects. Again, we find a significant (at the 1% level) positive coefficient of

the financial interaction variable. This likewise corroborates the idea that financial development affects the

efficiency of investment.

Please note that our results concerning the significantly larger positive impact of financial development

on TFP in financially dependent sectors represents a marked contrast to the insignificant effect of the

same variable that other studies have found using growth in industry value added per worker as a measure of

productivity (see, for example Barone and Cingano (2008)). One possible explanation is that better financial

development induces faster employment growth than growth in industry capital stocks in more financially

dependent sectors, so that industry capital-labour ratios decrease in those countries and sectors. In line

with this interpretation, Rajan and Zingales (1998) provide some evidence that the effect of better external

finance works through differentials in the growth rate of the number of firms rather than in value added per

23An exception is Jayaratne and Strahan (1996). Using data for several banking liberalization episodes in different US states,
they show that bank branch deregulation has increased the efficiency but not the overall amount of bank credit in the US.
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firm. Hence, if higher financial development disproportionately benefits new, small firms, which operate at

a lower capital intensity than large, established ones, industry capital labour ratios might well be lower in

financially dependent sectors in countries with better financial systems. This mechanism would explain why

financial development has no significant effect on value added per worker but a positive impact on TFP.24

7. Conclusions

We have estimated total factor productivity (TFP) for more than sixty countries at all stages of development

by using information contained in bilateral sectoral trade data. To this end we have derived structural

estimation equations from a hybrid Ricardo-Heckscher-Ohlin model with transport costs. Differences in

sectoral TFP have been estimated as observed trade that cannot be explained by differences in factor

intensities and in factor prices or by differences in trade barriers across countries. The main advantage of

our methodology is that it allows us to overcome severe data limitations that constrain the application of

traditional methods of TFP computation.

Our results show that productivity differences in manufacturing sectors are large and systematically

related to income per capita. In addition, productivity variation between rich and poor countries is more

pronounced in skilled labour and R&D intensive sectors. We have also provided evidence that Ricardian

productivity differences are very important in explaining bilateral sectoral trade patterns. Moreover, our

methodology permits us to compute bilateral rankings of productivity-based comparative advantage for any

pair of countries. We have also performed a series of robustness checks and have shown that our productivity

estimates are not sensitive to either the specific estimation methods or the particular trade model which

we used in deriving our structural estimation equations. Finally, we have used our TFP estimates to test a

number of development theories that have predictions on cross-country industry-level productivity patterns.

University of Vienna

International Labour Organization

24Indeed, Beck et al. (2008) find that financial development has a differential impact on the growth rate of small firms.
Industries that for exogenous technological reasons have smaller firms grow faster in countries with higher financial development.
Guiso et al. (2004) provide similar evidence for Italy.
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Appendix

Bilateral sectoral trade data, Mijk, and sectoral production, Outputjk, are obtained from the World Bank’s

Trade, Production and Protection database. This dataset merges trade flows and production data from

different sources into a common classification: the International Standard Industrial Classification (ISIC),

Revision 2. The database potentially covers 100 developing and developed countries over the period 1976-

2004. We use trade and production data for the periods 1984-1986, 1994-1996 and 2002-2004, covering 36

importing countries and 64 exporting countries. The 36 importers represent more than 2
3 of world imports.

Recall we exclude the US as an importer country because we use it as our benchmark. To mitigate problems

of data availability and to smooth the business cycle, we average the data over three years. Of the 28 sectors

in the ISIC classification we exclude Tobacco (314), Petroleum Refineries (353), Miscellaneous Petroleum

and Coal Products (354), and Other Manufactured Products Not Classified Elsewhere (390). This we do

because the trade data do not properly reflect productivity in those sectors.

For the monetary value of production, Q̃jk, we use information on Gross Output from the Trade, Pro-

duction and Protection database. Gross Output represents the value in current dollars of goods produced

in a year, whether sold or stocked.25 The original source of this variable is the United Nations Industrial

Development Organization’s (UNIDO) Industrial Statistics. For the years 1994-1996 some of these data have

been updated by Mayer and Zignago (2005). The production data published by UNIDO are by no means

complete, and that is the main limitation in computing productivities. UNIDO also collects data on the

number of establishments which we could have used directly, in place of Gross Output data. However, these

alternative data are less reliable than production data because different countries use different threshold firm

sizes when reporting data to UNIDO.

Sectoral elasticities of substitution, εk, are obtained from Broda and Weinstein (2006). They construct

elasticities of substitution across imported goods for the United States at the Standard International Trade

Classification (SITC) 5 digit level of disaggregation for the period 1990-2001. We transform these elasticities

25Our results are robust even using Value Added instead.



to our 3 digit ISIC rev. 2 level of disaggregation by weighting elasticities by US import shares.26

Sectoral factor income shares, (αku, αks, αkcap), are assumed to be fixed across countries. This assumption

allows us to use factor income share data for just one country, namely the US. To proxy for skill intensity, we

follow Romalis (2004) and use the ratio of non-production workers to total employment, obtaining data from

the NBER-CES Manufacturing Industry Database constructed by Bartelsman et al. (2000) and converting

US-SIC 87 categories to ISIC rev 2. The capital income share is computed as one less the share of total

compensation in value added, using the same source. In our three factor model intensities are rescaled in

such a way that
∑
i αk,i = 1; i = u, s, cap. As in Romalis (2004), αk,cap = cap. intensity; αks = skill

intensity ∗ (1− αkcap) and αku = 1− αks − αkcap.

Wages and rental rates at the country level are computed using the methodology exposed in Caselli (2005),

Caselli and Coleman (2006) and Caselli and Feyrer (2007). The definition of the rental rate is consistent with

a dynamic version of our model in which firms solve an inter-temporal maximization problem and capital

markets are competitive. Firms set the marginal value product equal to the rental rate, pjkMPKjk =

PKj(interestj + δ), where PKj is the price of capital goods in country j, interestj is the net interest rate in

country j and δ is the depreciation rate. This can be seen by considering the decision of firms in sector k in

country j to buy an additional unit of capital. The return from such an action is
pjk(t)MPKjk(t)+PKj(t+1)(1−δ)

PKj(t)
.

Abstracting from capital gains, firms will be indifferent as to whether to invest an additional dollar in the

firm itself or to put the same amount in an alternative investment opportunity that has a return interestj ,

when the above-mentioned relationship holds true. Because capital is mobile across sectors within a country

the marginal value product must likewise be equalized across sectors. Total payments to capital in country

j are
∑
k pjkMPKjkKjk = pjMPKj

∑
kKjk = rjKj where Kj is the country j′s capital stock in physical

26We have also worked with elasticities obtained from Hummels (1999) at the SITC 2 digit level and from Broda and Weinstein
(2006) at the SITC 3 digit level. While computed elasticities are different depending on the source, final estimates of TFP are
highly correlated. We prefer the SITC 5 digit level of disaggregation. For, on the one hand, there is a unique correspondence
between SITC 5 digits and ISIC 3 digits – i.e., the SITC code 01111 maps only to ISIC code 31 –, and on the other, there
is no unique mapping between ISIC 3 digits and SITC 2 or 3 digits. For example, the SITC code 53 could correspond to
ISIC codes 351 or 352. Thus, in the latter case choosing one specific ISIC code could lead to measurement bias, as we are
defining more or less arbitrarily which code to choose (note that one reasonable option is to choose the ISIC code which has
more correspondences at the SITC 5 digit level). Moreover, in some cases we still have to aggregate using import shares. For
example, ISIC sector 311 corresponds to SITC sectors 01-09, 21 and 22. In that case (and others), we again have to weight
somehow. So even working with SITC at a higher level of aggregation does not eliminate completely a potential measurement
bias problem.



units and the first equality follows from capital mobility across sectors. Since αj,cap =
rjKj
PY Y

, where Y is

GDP in Purchasing Power Parities, the following holds.

rj = αj,cap
GDPj
Kj

(A.1)

Capital stocks in physical units are computed with the permanent inventory method using investment

data from the Penn World Table (PWT). GDPj is also obtained from the PWT and is expressed in current

dollars. αj,cap is country j’s aggregate capital income share. We compute the capital share as one minus the

labour share in GDP, which we take from Bernanke and Gürkaynak (2002) and Gollin (2002). In turn, the

labour share is employee compensation in the corporate sector from the National Accounts plus a number

of adjustments to include the labour income of the self-employed and of non-corporate employees.

Similarly, to compute skilled and unskilled wages we use the the following result for the labour share:

(1− αj,cap) =
wuU + wu

ws
wu
S

GDPj
(A.2)

The total labour share is equal to payments to both skilled and unskilled workers relative to GDP. Skilled

and unskilled workers are expressed in efficiency units of non-educated workers and workers with complete

secondary education.27 Thus,

U = Lnoeduc + eβ∗
prim.dur.

2 Lprim.incomp. + eβ∗prim.dur.Lprim + eβ∗lowsec.dur.Llowsec (A.3)

and

S = Lsecondary + e2βLter.incomp. + e4βLtertiary. (A.4)

Data for educational attainment of workers over 25 years at each level are taken from Barro and Lee

(2001) and Cohen and Soto (2007). Information on the duration of each level of schooling in years by country

27Changing the base of skilled workers from completed secondary to completed primary, incomplete secondary or incomplete
tertiary education does not alter the results significantly. Further details about the construction of the wages and rental rates
can be found in Caselli’s papers referenced here.



is provided by UNESCO. For non-complete levels, we assume that workers have completed half of the last

level (except when we have data of lower secondary duration). For tertiary education we consider a duration

of 4 years given lack of data for most of the countries. Skill premia β by country are obtained from Bils and

Klenow (2000) and Banerjee and Duflo (2005). The wage premium wskill
wu

equals eβ∗(prim.dur.+lowsec.dur.). By

our calculations, wages of both skilled and unskilled workers are much higher in rich countries, but the wage

premium is negatively related to income per worker, which gives rich countries a relative advantage in skilled

labour intensive sectors. The relation between the rental rate and income per worker is slightly positive. The

absence of a strong relationship between the marginal product of capital and income per worker is similar to

Caselli and Feyrer (2007) once the latter correct for price differences and natural capital. Although in our

three factor model we do not adjust for the fraction of income that goes to natural capital, we do correct for

the price level of GDP.

To compute the productivity measures, we also require a number of bilateral variables commonly used

in gravity-type regressions. We take them from two sources: Rose (2004) and Mayer and Zignago (2005).

We include bilateral distance from the latter. CEPII has developed a distance database that uses city-level

data in the calculation of the distance matrix in order to assess the geographic distribution of population

inside each nation. The basic idea is to calculate the distance between two countries on the basis of bilateral

distances between cities, weighting by each city’s share of the country’s overall population. Also, CEPII

provides us a bilateral sectoral tariff database. Tariffs are measured at the bilateral level and for each

product of the HS6 nomenclature in the TRAINS database from UNCTAD. Those tariffs are aggregated

from TRAINS data in order to match the ISIC Rev.2 industry classification using world imports as weights

for HS6 products. Using Rose (2004) as a source, other bilateral variables which we employ are the following

indicators for any country pair sharing: a common border; a common language; membership in the same

regional trade agreement; membership in the same currency union; membership in the same general system

of preferences. Finally, we use an indicator variable that equals one if one of the countries is a former colony

of the other.



Table 1: Industry Statistics

Isic Rev. 2 Sector Name Skill Intensity Capital Intensity Elasticity of Substitution
311 Food 0.24 0.77 5.34
313 Beverages 0.49 0.85 3.94
321 Textiles 0.15 0.59 3.88
322 Apparel 0.16 0.6 3.3
323 Leather 0.17 0.63 2.24
324 Footwear 0.15 0.6 4.13
331 Wood 0.17 0.59 9.04
332 Furniture 0.19 0.55 2.07
341 Paper 0.23 0.72 5.72
342 Printing 0.47 0.64 2.58
351 Chemicals 0.41 0.82 5.62
352 Other Chemicals 0.45 0.82 4.73
355 Rubber 0.22 0.62 3.68
356 Plastic 0.23 0.68 2.11
361 Pottery 0.18 0.57 1.9
362 Glass 0.18 0.66 3.5
369 Other Non-Metallic 0.25 0.65 4.72
371 Iron and Steel 0.21 0.63 6.98
372 Non-Ferrous Metal 0.22 0.66 12.68
381 Fabricated Metal 0.25 0.56 2.91
382 Machinery 0.35 0.62 3.81
383 Electrical Machinery 0.35 0.7 3.04
384 Transport 0.32 0.62 4.6
385 Scientific 0.47 0.67 2.07

Mean 0.27 0.66 4.36

Source: Own computations using data of Bartelsman et. al. (2000) and Broda & Weinstein (2006). Skill
Intensity is defined as the ratio of non-production workers over total employment. Capital intensity is defined
as one minus the share of total compensation in value added



Table 2: Regression Coefficients

Isic Sector Difference Difference Common Common Common Common
Rev. 2 Name Distance Tariff Language English Border Colony

311 Food -.272 -.003 .098 -.1 .23
(.015) (.001) (.03) (.014) (.042)

313 Beverages -.274 -.003 .217 -.074 .191 .149
(.022) (.002) (.056) (.029) (.094) (.066)

321 Textiles -.348 -.017 .139 -.093 .217
(.015) (.002) (.042) (.025) (.046)

322 Apparel -.372 -.026 .142 .342
(.043) (.004) (.054) (.057)

323 Leather -.515 -.055 .31 -.096 .441
(.042) (.006) (.083) (.05) (.089)

324 Footwear -.244 -.01 .164 .073 .288
(.033) (.003) (.046) (.032) (.085)

331 Wood -.138 -.017 .086 .108 .053
(.011) (.003) (.016) (.031) (.02)

332 Furniture -.597 -.104 .252 .26 .456
(.051) (.011) (.066) (.122) (.09)

341 Paper -.304 -.014 .085
(.016) (.003) (.031)

342 Printing -.438 -.058 .55 -.465 .275 .538
(.029) (.01) (.097) (.054) (.09) (.091)

351 Chemicals -.24 -.004 .048 -.084 .063 .098
(.009) (.002) (.04) (.02) (.041) (.038)

352 OtherChemicals -.275 .202 -.064 .142
(.013) (.048) (.017) (.047)

355 Rubber -.311 -.06 .157 -.046 .148 .105
(.024) (.005) (.05) (.027) (.075) (.059)

356 Plastic -.646 -.052 .369 -.089 .25
(.047) (.006) (.084) (.048) (.098)

361 Pottery -.511 -.063 .465 .279
(.058) (.007) (.081) (.119)

362 Glass -.393 -.027 .198 .187 .11
(.017) (.004) (.05) (.086) (.064)

369 OtherNonMetallic -.288 -.019 .081 .139 .096
(.017) (.004) (.036) (.047) (.046)

371 IronAndSteel -.211 -.018 .102
(.009) (.005) (.028)

372 NonFerrousMetals -.138 -.012 -.04 .078
(.006) (.003) (.009) (.017)

381 FabricatedMetals -.437 -.045 .234 -.1 .113 .315
(.027) (.005) (.054) (.028) (.066) (.066)

382 Machinery -.276 -.022 .225 -.121 .217
(.015) (.004) (.044) (.018) (.049)

383 ElectricalMachinery -.329 -.046 .278 -.059 .254
(.021) (.004) (.062) (.027) (.063)

384 Transport -.248 -.031 .105 .148 .194
(.016) (.004) (.052) (.069) (.063)

385 Scientific -.398 -.036 .395 -.221 .419
(.025) (.005) (.093) (.038) (.101)

Observations 42217
R-Square .805

R-Square Within .469
rho .742

Fixed country-industry effects. Robust standard deviation clustered by exporter in parenthesis.



Table 3: Descriptive Statistics - Middle of the 90’s

exporter Mean S.D. Lowest TFP Highest TFP
ARG 0.48 0.27 Pottery 0.08 Food 1.25
AUS 0.91 0.30 Pottery 0.45 Textiles 1.57
AUT 1.04 0.27 Furniture 0.46 Scientific 1.53
BEL 1.12 0.26 Pottery 0.36 Leather 1.61
BGD 0.15 0.08 Electrical Machinery 0.06 Scientific 0.36
BOL 0.27 0.12 Plastic 0.10 Apparel 0.54
BRA 0.47 0.20 Pottery 0.09 Food 0.99
CAN 0.72 0.15 Footwear 0.48 Paper 1.01
CHL 0.44 0.28 Plastic 0.16 Beverages 1.15
CHN 0.16 0.06 Transport 0.09 Plastic 0.31
CIV 0.42 0.21 Fabricated Metal 0.13 Food 0.97
COL 0.27 0.13 Plastic 0.10 Food 0.57
CRI 0.45 0.17 Plastic 0.17 Non-Ferrous Metal 0.81
CYP 0.70 0.26 Fabricated Metal 0.37 Transport 1.35
DNK 1.41 0.22 Pottery 0.91 Rubber 1.69
ECU 0.23 0.11 Plastic 0.08 Food 0.53
EGY 0.25 0.09 Electrical Machinery 0.11 Non-Ferrous Metal 0.42
ESP 0.83 0.14 Leather 0.52 Other Non-Metallic 1.09
FIN 0.81 0.23 Pottery 0.16 Iron and Steel 1.17
FRA 0.97 0.18 Leather 0.67 Beverages 1.54
GBR 0.94 0.17 Furniture 0.64 Beverages 1.42
GER 0.99 0.11 Footwear 0.76 Textiles 1.27
GHA 0.24 0.14 Fabricated Metal 0.06 Food 0.64
GRC 0.44 0.14 Pottery 0.08 Food 0.64
GTM 0.37 0.18 Electrical Machinery 0.15 Food 0.74
HND 0.21 0.12 Leather 0.06 Transport 0.54
HUN 0.38 0.20 Leather 0.09 Apparel 1.09
IDN 0.32 0.15 Transport 0.15 Furniture 0.78
IND 0.18 0.11 Pottery 0.07 Furniture 0.59
IRL 1.10 0.31 Pottery 0.11 Beverages 1.65
ISL 0.92 0.31 Furniture 0.23 Iron and Steel 1.39
ISR 0.93 0.20 Leather 0.52 Machinery 1.30
ITA 1.13 0.20 Electrical Machinery 0.81 Furniture 1.57
JOR 0.22 0.10 Leather 0.06 Beverages 0.40
JPN 0.89 0.28 Leather 0.36 Rubber 1.39
KEN 0.15 0.06 Rubber 0.07 Pottery 0.27
KOR 0.53 0.13 Furniture 0.28 Rubber 0.83
LKA 0.20 0.06 Machinery 0.11 Furniture 0.35
MAR 0.26 0.11 Leather 0.09 Chemicals 0.47
MEX 0.45 0.15 Leather 0.24 Beverages 0.82
MLT 0.63 0.19 Pottery 0.28 Chemicals 0.94
MUS 0.45 0.18 Leather 0.23 Food 0.83
MYS 0.60 0.21 Other Non-Metallic 0.35 Apparel 1.24
NLD 1.32 0.19 Pottery 0.69 Beverages 1.59
NOR 1.24 0.33 Printing 0.59 Paper 1.68
PAK 0.20 0.15 Printing 0.07 Furniture 0.63
PAN 0.37 0.09 Plastic 0.24 Chemicals 0.57
PER 0.30 0.18 Leather 0.12 Food 0.86
PHL 0.31 0.15 Rubber 0.13 Furniture 0.75
POL 0.26 0.11 Pottery 0.08 Iron and Steel 0.45
PRT 0.58 0.14 Furniture 0.29 Beverages 0.91
ROM 0.14 0.04 Leather 0.06 Iron and Steel 0.23
SEN 0.38 0.24 Fabricated Metal 0.08 Scientific 0.92
SGP 1.19 0.33 Pottery 0.41 Textiles 1.67
SLV 0.50 0.16 Printing 0.22 Glass 0.73
SWE 1.15 0.20 Leather 0.76 Textiles 1.53
THA 0.26 0.11 Beverages 0.13 Furniture 0.58
TTO 0.28 0.11 Electrical Machinery 0.12 Beverages 0.47
TUN 0.22 0.08 Leather 0.08 Chemicals 0.35
TUR 0.39 0.15 Pottery 0.13 Food 0.65
URY 0.61 0.27 Plastic 0.21 Apparel 1.16
USA 1.00 0 Food 1.00 Food 1.00
VEN 0.27 0.14 Furniture 0.07 Non-Ferrous Metal 0.57
ZAF 0.56 0.25 Printing 0.22 Food 1.00
ZWE 0.16 0.07 Fabricated Metal 0.06 Iron and Steel 0.26



Table 4: TFP and Sector Characteristics

log(TFP) log(TFP) log(TFP) log(TFP)
skill -15.074 -9.679

(3.205)*** (3.473)**
skill * income 1.510 0.960

(0.346)*** (0.375)*
capital 1.370 2.852

(2.025) (2.030)
capital * income -0.018 -0.177

(0.217) (0.217)
R&D -13.900 -12.894

(4.400)** (4.262)**
R&D * income 1.528 1.364

(0.474)** (0.461)**
Country Fixed Effects Yes Yes Yes Yes

Observations 1450 1450 1450 1450
Countries 64 64 64 64

Fixed effect panel regression weighted by the inverse of the standard deviation of TFP.
Robust standard deviation clustered by exporter in parenthesis. Significant at the 1% (***), 5% (**), and 10% (*) level.



Table 5: Coefficients - Hausman-Taylor Regression

First Stage Second Stage
Isic Sector Difference Difference Common Common Common Common Relatively Relatively

Rev 2 Name Distance Tariff Language English Border Colony Skill Unskill
311 Food -1.440 -0.016 0.510 -0.529 0.136 1.227 -14.242 -7.6

(0.054)*** (0.005)*** (0.141)*** (0.091)*** (0.215) (0.214)*** (1.988)*** (0.601)***
313 Beverages -1.079 -0.014 0.856 -0.290 0.751 0.589 -10.493 -5.416

(0.071)*** (0.007)** (0.18)*** (0.111)*** (0.292)** (0.271)** (2.041)*** (1.796)***
321 Textiles -1.349 -0.064 0.540 -0.362 -0.004 0.841 -6.215 -3.801

(0.054)*** (0.008)*** (0.134)*** (0.088)*** (0.203) (0.182)*** (1.477)*** (0.269)***
322 Apparel -1.201 -0.090 0.424 0.094 0.234 1.115 -17.248 -3.798

(0.08)*** (0.01)*** (0.155)*** (0.096) (0.243) (0.207)*** (1.758)*** (0.343)***
323 Leather -1.146 -0.123 0.686 -0.213 0.074 0.985 -6.16 -5.167

(0.061)*** (0.012)*** (0.157)*** (0.102)** (0.227) (0.203)*** (1.615)*** (0.338)***
324 Footwear -1.005 -0.043 0.706 0.304 1.195 -0.105 -7.504 -4.558

(0.075)*** (0.009)*** (0.18)*** (0.118)*** (0.286)*** (0.252) (2.147)*** (0.342)***
331 Wood -1.239 -0.155 0.817 -0.112 0.951 0.481 -14.735 -3.969

(0.061)*** (0.021)*** (0.135)*** (0.096) (0.246)*** (0.174)*** (1.446)*** (0.287)***
332 Furniture -1.232 -0.213 0.564 -0.119 0.515 0.946 -13.989 -3.296

(0.069)*** (0.018)*** (0.154)*** (0.101) (0.26)** (0.203)*** (1.259)*** (0.308)***
341 Paper -1.710 -0.080 0.413 -0.076 0.301 0.252 -10.515 -3.237

(0.057)*** (0.015)*** (0.165)** (0.103) (0.217) (0.215) (1.84)*** (0.524)***
342 Printing -1.130 -0.150 1.418 -1.198 0.708 1.388 -1.437 -6.863

(0.054)*** (0.023)*** (0.151)*** (0.087)*** (0.229)*** (0.212)*** (0.522)*** (0.491)***
351 Chemicals -1.349 -0.022 0.272 -0.473 0.356 0.552 -8.352 -8.3

(0.049)*** (0.011)** (0.161)* (0.098)*** (0.202)* (0.22)** (1.272)*** (0.933)***
352 Other Chemic -1.270 -0.006 0.931 -0.291 0.272 0.657 -12.864

(0.047)*** (0.013) (0.152)*** (0.089)*** (0.241) (0.187)*** (1.259)***
355 Rubber -1.145 -0.221 0.580 -0.170 0.544 0.386 -1.956 -3.064

(0.058)*** (0.019)*** (0.16)*** (0.098)* (0.238)** (0.208)* (1.248) (0.341)***
356 Plastic -1.327 -0.112 0.738 -0.172 0.380 0.514 -7.392 -4.08

(0.057)*** (0.009)*** (0.139)*** (0.092)* (0.274) (0.198)*** (1.177)*** (0.355)***
361 Pottery -0.966 -0.121 0.849 0.081 0.056 0.523 -14.707 -3.61

(0.07)*** (0.011)*** (0.162)*** (0.112) (0.288) (0.224)** (1.718)*** (0.34)***
362 Glass -1.374 -0.093 0.720 -0.074 0.637 0.390 -15.683 -2.853

(0.054)*** (0.013)*** (0.177)*** (0.102) (0.258)** (0.218)* (1.542)*** (0.346)***
369 Other Non-Metal -1.354 -0.089 0.436 -0.138 0.629 0.458 -14.9 -0.796

(0.056)*** (0.018)*** (0.153)*** (0.106) (0.233)*** (0.194)** (1.207)*** (0.376)**
371 Iron and Steel -1.470 -0.120 -0.137 -0.134 0.104 0.807 -18.398 -0.458

(0.054)*** (0.021)*** (0.162) (0.112) (0.21) (0.207)*** (1.65)*** (0.397)
372 Non-Ferrous -1.782 -0.140 0.034 -0.516 -0.322 1.005 -19.678 -2.493

(0.069)*** (0.037)*** (0.185) (0.123)*** (0.258) (0.226)*** (1.613)*** (0.433)***
381 Fabricated Metal -1.271 -0.131 0.681 -0.292 0.329 0.917 -4.467 -3.099

(0.048)*** (0.011)*** (0.123)*** (0.079)*** (0.202) (0.179)*** (0.844)*** (0.289)***
382 Machinery -1.035 -0.084 0.838 -0.453 0.176 0.820 -6.047 -3.022

(0.044)*** (0.015)*** (0.12)*** (0.083)*** (0.192) (0.174)*** (0.613)*** (0.349)***
383 Electrical Machin -0.968 -0.141 0.807 -0.164 0.364 0.761 -4.113 -4.495

(0.047)*** (0.011)*** (0.135)*** (0.09)* (0.237) (0.185)*** (1.074)*** (0.577)***
384 Transport -1.140 -0.138 0.537 -0.146 0.651 0.896 -7.412 -2.051

(0.068)*** (0.016)*** (0.188)*** (0.118) (0.278)** (0.293)*** (1.01)*** (0.438)***
385 Scientific -0.796 -0.077 0.784 -0.445 0.316 0.856 -9.907

(0.043)*** (0.011)*** (0.127)*** (0.083)*** (0.215) (0.192)*** (0.509)***
Observations 42217 42217
R-square 0.64 0.55
R-square Within 0.46 0.35
rho 0.47 0.61

Robust standard deviations in parenthesis. Significant at the 1% (***), 5% (**), and 10% (*) level.



Table 6: Robustness of TFP Estimates

Specification Correlation Spearman
Hausman-Taylor 0.98 0.96

Heckman 0.90 0.93
Heterogenous Firms 0.89 0.93

Eaton-Kortum 0.89 0.90
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Figure 1: Relative TFP - Selected Sectors
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Figure 2: Aggregate Manufacturing TFP vs. TFP Solow Residual
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Figure 4: Ricardian Comparative Advantage Relative to the US - Selected Countries


